COURSE OUTLINE

1. GENERAL

_					
SCHOOL	OF SCIENCES				
DEPARTMENT	OF PHYSICS				
LEVEL OF STUDIES	Undergradua	te			
COURSE CODE	Y704		SEMESTER	70	
COURSE TITLE	LABORATORY	OF ATOMIC	AND NUCLEAR PI	HYSICS	
TEACHING ACT	IVITIES				
If the ECTS Credits are distribute	•	-	TEACHING		
course e.g. lectures, labs etc. If the			HOURS PER	ECTS CREDITS	
to the whole course, then please in	WEEK				
per week and the correspo					
		LECTURES	4	5	
Please, add lines if necessary. Teac	hing methods of	and			
organization of the course are des	cribed in section	n 4.			
COURSE TYPE	Scientific Area	a			
Background, General Knowledge,					
Scientific Area, Skill Development					
PREREQUISITES:	-				
TEACHING & EXAMINATION	GREEK				
LANGUAGE:					
COURSE OFFERED TO ERASMUS	NO				
STUDENTS:					
COURSE URL:	https://eclass	s.emt.duth.gr	/courses/PHYSIC	<u>5222/</u>	

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

Upon successful completion of the course, students will have been introduced to the laboratory and experimental methodology for studying and acquiring data related to the fundamental concepts governing physical phenomena associated with light, electrons, and atoms. They will have observed and studied simple quantum phenomena, and will have understood concepts such as counting rate, detector dead time, geometry factor, detector efficiency, interaction cross section, activation, mean free path, and material thickness. Finally, they will have become familiar with the notions of measurement accuracy and experimental errors and will be able to incorporate them into the analysis of their experimental data.

In addition, they will have acquired the ability to quantitatively interpret physical quantities through real measurements, the critical capacity to compare theoretical predictions with experimental results, and the competence to prepare concise scientific reports with clear presentation of methodology, results, and error analysis.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and Project design and management

information, Equity and Inclusion

ICT Use Respect for the natural environment

Adaptation to new situations Sustainability

Decision making

Demonstration of social, professional and moral responsibility and sensitivity to gender issues

Teamwork Critical thinking

Working in an international environment Working in an interdisciplinary environment Production of new research ideas Promoting free, creative and inductive reasoning

- Application of knowledge in practice
 - Search, analysis, and synthesis of data and information
 - Adaptation to new situations
 - Individual report writing

3. COURSE CONTENT

Error estimation in individual measurements, error propagation, least squares with errors, inverse square law calculations, radioactive decay law, β -radiation, beta emitter bremsstrahlung, gamma-ray spectroscopy, inelastic electron scattering (Franck–Hertz experiment), photoelectric effect (measurement of Planck's constant), wave nature of electrons (electron diffraction), determination of the mass and e/m ratio of the electron, interaction of light with matter, scintillators, and the use of specialized software for simulations of the above experiments.

4. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Face to Face			
Face to face, Distance learning, etc.				
USE OF INFORMATION &	Use of ICT in Teaching			
COMMUNICATIONS TECHNOLOGY	Use of ICT in Communication w	vith students		
(ICT)				
Use of ICT in Teaching, in Laboratory				
Education, in Communication with				
students				
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are	Laboratory experiment	70		
described in detail.	Writing lab report	45		
Lectures, Seminars, Laboratory	Self Study	10		
Exercise, Field Exercise, Bibliographic				
research & analysis, Tutoring, Internship (Placement), Clinical				
Internship (Placement), Clinical Exercise, Art Workshop, Interactive				
learning, Study visits, Study / creation,				
project, creation, project. Etc.	Course total (25 hours	40-		
project, creation, project. Ltc.	/ ECTS)	125		
The supervised and unsupervised				
workload per activity is indicated here,				
so that total workload per semester				
complies to ECTS standards.				
STUDENT EVALUATION	Compulsory in-class assignmen	ts (30%).		
Description of the evaluation process				
	Proper execution of the experi	ment (10%).		
Assessment Language, Assessment	·	, ,		
Methods, Formative or Concluding,	Final written examination (60%	(use of notes is not		
Multiple Choice Test, Short Answer	permitted).	, ,		
Questions, Essay Development	,			
Questions, Problem Solving, Written				
Assignment, Essay / Report, Oral				
Exam, Presentation in audience,				
Laboratory Report, Clinical				
examination of a patient, Artistic				
interpretation, Other/Others				
Places indicate all relevant				
Please indicate all relevant				
information about the course				

assessment	and	how	students	are
informed				

5. SUGGESTED BIBLIOGRAPHY

- Suggested bibliography: Related academic journals:
- Laboratory Exercises in Atomic Physics, S. Dedoussis et al., Thessaloniki, 1998
- Nuclear Physics in the Laboratory Student Exercises, Ch. Eleftheriadis et al., COPYCITY, Thessaloniki, 2012