

COURSE OUTLINE

1. GENERAL

SCHOOL					
DEPARTMENT	DEPARTMENT OF PHYSICS UNDEGRADUATE STUDY PROGRAM: PHYSICS				
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equivalent level				
COURSE CODE	Y703-2023	SEMESTER 7th Semester			
COURSE TITLE	Astronomy - Astrophysics				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits. TEACHING HOURS PER WEEK CREDITS					
			4		7.0
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Background				
PREREQUISITES	None				
TEACHING & EXAMINATION LANGUAGE:	Greek				
COURSE OFFERED TO ERASMUS STUDENTS:	NO				
COURSE URL:	https://eclass.emt.duth.gr/courses/PHYSICS253/				

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The course aims at learning basic concepts in Astronomy, which is an important field of Physics. Students should be able to understand the basic laws and rules that govern the scientific subject of Astronomy-Astrophysics, understand and explain basic concepts in the Solar System (structure and phenomena in it), the Sun, galaxies (ours and others), as well as the concept of cosmology. They will also learn thoroughly the types and the evolution process of stars and galaxies. Finally, they will be able to solve basic Astronomy problems. By completing the course, students will have the ability to judge phenomena they see in the night sky, explain the evolution of our own and other star systems, and have knowledge of the evolution of the universe.

1

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Adaptation to new situations

Decision making

Promoting free, creative and inductive reasoning

3. COURSE CONTENT

Basic astronomy concepts

Coordinate Systems and Time

Ecliptic

Planetary Movements

Kepler's laws

Satellites and Comets

Star distances

Stellar magnitudes

Star temperature

Formation and intensity of spectral lines

Spectra and spectral classification of stars

Sun

Basic concepts of stellar evolution and the final stages of stars

Double stars

Variable stars

Evolution of galaxies

Cosmology

4. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Face to face
Face to face, Distance learning, etc.	
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT)	Use of ICT in Teaching Use of ICT in Communication with students
Use of ICT in Teaching, in Laboratory Education, in Communication with students	ose of ici in communication with students

2

TEACHING ORGANIZATION

The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc.

The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards

Activity	Workload/semester		
Lectures	52		
Bibliographic research & analysis	140		
Total	192		

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others

Please indicate all relevant information about the course assessment and how students are informed

Student evaluation languages

Greek

Method (Formative or Concluding)

Summative

Student evaluation methods	Rate
Written exam with multiple choice test	30
Written Exam with Short Answer Questions	30
Written Exam with Essay Development Questions	40

5. Suggested Bibliography

Του Ευδόξου

Eudoxus

Εισαγωγή στη σύγχρονη αστρονομία, Χ.Βάρβογλης, Ι.Σειραδάκης Εισαγωγή στη Σύγχρονη Αστροφυσική, Bradley W Carroll, Dale A. Ostlie επιμ.Καζαντζίδης Στυλιανός, Παππάς Γεώργιος ΑΣΤΡΟΦΥΣΙΚΗ ΤΟΜΟΣ I, SHU FRANK ΑΣΤΡΟΦΥΣΙΚΗ ΤΟΜΟΣ II, SHU FRANK

3