COURSE OUTLINE

1. GENERAL

SCHOOL	OF SCIENCES				
DEPARTMENT	OF PHYSICS				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	Y504	SEMESTER 5°			
COURSE TITLE	QUANTUM MECHANICS I				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PER WEEK	ECTS CRED	ITS
LECTURES		4	5		
Please, add lines if necessary. Teaching methods and organization of the course are described in section 4.					
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	Scientific Area	a			
PREREQUISITES:	-				
TEACHING & EXAMINATION LANGUAGE:	GREEK				
COURSE OFFERED TO ERASMUS STUDENTS:	NO				
COURSE URL:	https://eclass.emt.duth.gr/courses/				

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

Upon successful completion of the course, students will be able to: understand the fundamental concepts, principles, and laws of Quantum Mechanics, including wave—particle duality, the Schrödinger equation, the uncertainty principle, and their applications. To demonstrate knowledge of model quantum systems such as potential wells, the harmonic oscillator, and the hydrogen atom. To apply this knowledge to the solution of related complex problems and develop critical thinking skills to evaluate, analyze, and interrelate quantum mechanical principles and their implications.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and Project design and management

information, Equity and Inclusion

ICT Use Respect for the natural environment

Adaptation to new situations Sustainability

Decision making Demonstration of social, professional and moral Autonomous work responsibility and sensitivity to gender issues

Teamwork Critical thinking

Working in an international environment Promoting free, creative and inductive reasoning

Working in an interdisciplinary environment

Production of new research ideas

Application of knowledge in practice

- Exercise of critical and self-critical thinking
- Promotion of free, creative, and inductive thinking

3. COURSE CONTENT

Wave-particle duality of light and matter; statistical interpretation of the Schrödinger equation; uncertainty principle; vector spaces; linear operators; algebra of quantum mechanical operators; Dirac notation; simple quantum systems; three-dimensional problems: quantization of a particle in a box; central potentials; hydrogen atom.

4. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Face to Face			
Face to face, Distance learning, etc.				
USE OF INFORMATION &	Use of ICT in Teaching			
COMMUNICATIONS TECHNOLOGY	Use of ICT in Communication with students			
(ICT)				
Use of ICT in Teaching, in Laboratory				
Education, in Communication with				
students				
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are	Lectures	100		
described in detail.	Tutorial	25		
Lectures, Seminars, Laboratory	Tutorial			
Exercise, Field Exercise, Bibliographic				
research & analysis, Tutoring,				
Internship (Placement), Clinical				
Exercise, Art Workshop, Interactive				
learning, Study visits, Study / creation,	C + 1 (251			
project, creation, project. Etc.	Course total (25 hours	125		
	/ ECTS)			
The supervised and unsupervised				
workload per activity is indicated here,				
so that total workload per semester				
complies to ECTS standards.				
STUDENT EVALUATION	Final written examination (100%) (use of notes is not			
Description of the evaluation process	permitted).			
Assessment Language, Assessment				
Methods, Formative or Concluding,				
Multiple Choice Test, Short Answer				
Questions, Essay Development				
Questions, Problem Solving, Written				
Assignment, Essay / Report, Oral				
Exam, Presentation in audience,				
Laboratory Report, Clinical				
examination of a patient,Artistic				
interpretation, Other/Others				
Please indicate all relevant				
information about the course				
assessment and how students are				
informed				

5. SUGGESTED BIBLIOGRAPHY

- Suggested bibliography: Related academic journals:
- Quantum Mechanics I, S. Trachanas, ITE/PEK
- Quantum Mechanics, N. Zettili, Sophia Publications
- Quantum Physics, S. Gasiorowicz, Kleidarithmos Publications