

COURSE OUTLINE

1. GENERAL

SCHOOL							
DEPARTMENT	DEPARTMENT OF PHYSICS UNDEGRADUATE STUDY PROGRAM: PHYSICS						
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equivalent level						
COURSE CODE	Y204-2023	SEMESTER 2nd Semester			d Semester		
COURSE TITLE	Algorithms and Computers Programming						
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits. TEACHING HOURS PER WEEK CRED							
			4		6.0		
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Background						
PREREQUISITES	None						
TEACHING & EXAMINATION LANGUAGE:	Greek						
COURSE OFFERED TO ERASMUS STUDENTS:	YES						
COURSE URL:	https://eclass.emt.duth.gr/courses/PHYSICS159/						

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The student who succeeds in this course will have understood the logic behind how to solve basic programming problems by selecting the appropriate algorithm in each case. They will be able to approach a problem by breaking it down into the necessary analytical steps, using pseudocode and/or flowcharts. They will then program each individual smaller part and integrate them to solve the overall problem.

This course aims to develop digital skills, the ability to analyze problems, collaborative problem-solving strategies, and the ability to search for and utilize relevant information from the internet. It also offers students a first taste of an entire branch of Physics: Computational Physics.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information, ICT Use

Adaptation to new situations

Decision making

Autonomous work

Teamwork

Working in an interdisciplinary environment

Promoting free, creative and inductive reasoning

3. COURSE CONTENT

The course aims to teach fundamental concepts related to the logic and use of algorithms, as well as introduce students to basic programming principles. The programming language chosen for this course is Python. Students are expected to understand why it is important to use algorithms in solving programming problems and to be able to choose the appropriate algorithm for each situation. In addition, they will learn only the basic programming commands, while take-home assignments will be used to encourage further independent learning.

Specifically, for the Algorithms section:

Definition of algorithms. Rules of algorithm design.

Fundamental concepts of algorithm efficiency analysis. Notation: O, $\Omega,$ and $\Theta.$

Algorithms for:

Sorting

Searching

String manipulation

Graph problems

Combinatorial problems

Geometric problems

Numerical problems

Fundamental algorithmic techniques:

Brute force and exhaustive search

Decrease and conquer

Divide and conquer

Transform and conquer

Greedy method

Dynamic programming

Backtracking

Branch and bound

Recursive algorithms

Graph algorithms

The concept of pseudocode

The concept of flowcharts, the rules for creating them, and their practical use Examples demonstrating how pseudocode and flowcharts are used in problem solving

For the Programming section:

General introduction to Python and its programming environments

Introduction to operators and the syntax structure of Python code (e.g., indentation)

Sequential structure

Conditional structures (if / elif / else)

Looping structures using for

Looping structures using while

Data structures using lists

Data structures using tuples

Data structures using dictionaries

Functions

File handling

TEACHING METHOD

4. LEARNING & TEACHING METHODS - EVALUATION

Face to face, Distance learning, etc.					
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Use of ICT in Teaching Use of ICT in Laboratory Education Use of ICT in Communication with students				
TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise,		Activity	Workload/semester		
Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive		Lectures	52		
learning, Study visits, Study / creation, project, creation, project. Etc.		Tutoring	26		
The supervised and unsupervised workload per activity is		Bibliographic research & analysis	100		
indicated here, so that total workload per semester complies to ECTS standards		Total	178		
STUDENT EVALUATION Description of the evaluation process	Student evaluation languages Greek English Method (Formative or Concluding) Summative				
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions,					
Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	Student ev Written Exam	Rate 100			
Please indicate all relevant information about the course assessment and how students are informed					

Face to face

5. Suggested Bibliography

Εισαγωγή στον Υπολογισμό και τον Προγραμματισμό με την Python, 3η έκδοση, Guttag John V.

Python - Προγραμματισμός για Επιστήμες Υπολογιστών και Δεδομένων, Lin Johnny Wei-Bing, Aizenman Hannah, Espinel Erin Manette Cartas, Gunnerson Kim, Liu Joanne, Κατσαούνης Θεόδωρος (Επιστ. Επιμέλεια) PYTHON 3: ΑΛΓΟΡΙΘΜΙΚΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΑΡΙΣΤΕΙΔΗΣ Σ. ΜΠΟΥΡΑΣ, ΓΙΑΝΝΗΣ Θ. ΚΑΠΠΟΣ

Η ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ PYTHON, MATTHES ERIC

Ανάλυση και Σχεδίαση Αλγορίθμων, 3η Έκδοση, Levitin Anavy, Μάνος Ρουμελιώτης (επιμέλεια)

Eudoxus

Εισαγωγή στον Υπολογισμό και τον Προγραμματισμό με την Python, 3η έκδοση, Guttag John V.

Python - Προγραμματισμός για Επιστήμες Υπολογιστών και Δεδομένων, Lin Johnny Wei-Bing, Aizenman Hannah, Espinel Erin Manette Cartas, Gunnerson Kim, Liu Joanne, Κατσαούνης Θεόδωρος (Επιστ. Επιμέλεια) PYTHON 3: ΑΛΓΟΡΙΘΜΙΚΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΑΡΙΣΤΕΙΔΗΣ Σ. ΜΠΟΥΡΑΣ, ΓΙΑΝΝΗΣ Θ. ΚΑΠΠΟΣ

Η ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ PYTHON, MATTHES ERIC

Ανάλυση και Σχεδίαση Αλγορίθμων, 3η Έκδοση, Levitin Anavy, Μάνος Ρουμελιώτης (επιμέλεια)