

COURSE OUTLINE

1. GENERAL

SCHOOL					
DEPARTMENT	DEPARTMENT OF PHYSICS				
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equivalent level				
COURSE CODE	Y201-2023	SEMESTER 1st :		t Semester	
COURSE TITLE	Physics II				
TEACHING ACTIVITIES If the ECTS Credits are distributed in etc. If the ECTS Credits are awarded teaching hours per week and the cor	TEACHING HOURS PER WEEK		ECTS CREDITS		
		5		8.0	
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Background				
PREREQUISITES					
TEACHING & EXAMINATION LANGUAGE:	Greek				
COURSE OFFERED TO ERASMUS STUDENTS:	NO				
COURSE URL:	https://eclass.emt.duth.gr/courses/PHYSICS192/				

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The aim and objective of the course is to enable students to understand the basic concepts and basic laws of Electricity such as the electric field, Gauss's law in electricity, Magnetism such as the magnetic field and magnetic induction, as well as the Biot-Savart laws, Gauss's law in magnetism and Faraday's law. Also, students will know and study electrical circuits and their basic laws of analysis such as Kirchhoff's laws. Through this course they will learn about the Nature and Propagation of Light, the characteristics, properties and basic principles of propagation of electromagnetic waves in various media, as well as basic concepts of Optics such as Contribution and Diffraction. Finally, they will learn basic concepts of Atomic and Nuclear Physics such as the atomic model of Hydrogen, the spin of electrons, the structure of materials, properties of nuclei, stability and radioactivity, nuclear reactions, nuclear fission. Upon successful completion of the course, the student will have acquired:

- Ability to demonstrate in-depth knowledge and understanding of the basic concepts, principles and laws related to Electricity and Magnetism, basic laws for the analysis of electrical circuits, as well as basic concepts of Optics and Wave Physics in general, as well as Atomic and Nuclear Physics.
- Ability to apply this knowledge to solve related complex problems.

1

- Critical thinking skills so that they can evaluate, analyze and correlate this knowledge.
- Ability to interpret everyday life phenomena.
- Ability to develop collaboration with other students to solve problems related to this course.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information, ICT Use

Autonomous work

Teamwork

Critical thinking

3. COURSE CONTENT

- 1. Electric Charge, Coulomb's Law,
- 2. Electric Field, Gauss's Law, Electric Potential
- 3. Capacitors and R-C Dielectric Circuits
- 4. Magnetic Fields and Magnetic Forces,
- 5. Magnetic Field Sources, Ampere's Law,
- 6. Electromagnetic Induction, Faraday's Law,
- 7. Lenz's Law, Induced Electric Fields
- 8. R-L, R-C, R-L-C Circuits, Kirchhoff's Laws,
- 9. Alternating Current, Power in AC Circuits.
- 10. Nature and Propagation of Light,
- 11. Reflection, Refraction, Polarization, Interference and Diffraction
- 12. Structure of Atoms, Molecules and Matter, Properties of Nuclei,
- 13. Radioactivity, Nuclear Reactions, Nuclear Fission and Fusion.

4. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Face to face
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Use of ICT in Teaching Use of ICT in Communication with students

2

TEACHING ORGANIZATION

The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc.

The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards

Activity	Workload/semester		
Lectures	65		
Writing project	7		
Bibliographic research & analysis	65		
Total	137		

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others

Please indicate all relevant information about the course assessment and how students are informed

Student evaluation languages

Greel

Method (Formative or Concluding)

Formative

Student evaluation methods

Written Exam with Problem Solving

Rate

5. Suggested Bibliography

C. Giancoli, Φυσική για Επιστήμονες και Μηχανικούς, τόμ. 2, Α. Ζαχαριάδου, Α. Κεχαγιάς, Ι. Ρέκανος, και Γ. Τσιπολίτης, Επιμ., 5η έκδ. ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε., 2025.

R. SERWAY και J. JEWETT, ΦΥΣΙΚΉ ΓΙΑ ΕΠΙΣΤΗΜΟΝΈΣ ΚΑΙ ΜΗΧΑΝΙΚΟΎΣ: ΗΛΕΚΤΡΙΣΜΌΣ ΚΑΙ ΜΑΓΝΗΤΙΣΜΌΣ, ΦΩΣ ΚΑΙ ΟΠΤΙΚΉ, ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΉ, τόμ. 2, 8η έκδ. ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΌΣ ΕΠΕ, 2013.

D. HALLIDAY, και R. RESNICK, ΦΥΣΙΚΗ, τόμ. 2, 4η έκδ. ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΕΣ ΕΚΔΟΣΕΙΣ Α.Γ.ΠΝΕΥΜΑΤΙΚΟΣ, 2009.

Eudoxus

C. Giancoli, Φυσική για Επιστήμονες και Μηχανικούς, τόμ. 2, Α. Ζαχαριάδου, Α. Κεχαγιάς, Ι. Ρέκανος, και Γ. Τσιπολίτης, Επιμ., 5η έκδ. ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε., 2025.

R. SERWAY και J. JEWETT, ΦΥΣΙΚΉ ΓΙΑ ΕΠΙΣΤΗΜΟΝΕΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ: ΗΛΕΚΤΡΙΣΜΌΣ ΚΑΙ ΜΑΓΝΗΤΙΣΜΌΣ, ΦΩΣ ΚΑΙ ΟΠΤΙΚΉ, ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΉ, τόμ. 2, 8η έκδ. ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΌΣ ΕΠΕ, 2013.

D. HALLIDAY, και R. RESNICK, ΦΥΣΙΚΗ, τόμ. 2, 4η έκδ. ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΕΣ ΕΚΔΟΣΕΙΣ Α.Γ.ΠΝΕΥΜΑΤΙΚΟΣ, 2009.

3