

COURSE OUTLINE

1. GENERAL

SCHOOL						
DEPARTMENT	DEPARTMENT OF PHYSICS UNDE	GRADUATE STUI	DY PROGRAM: PH	IYSICS		
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equ	ivalent level				
COURSE CODE	Y102-2023	SEMI	ESTER	1s	t Semester	
COURSE TITLE	Calculus I					
TEACHING ACTIVITIES If the ECTS Credits are distributed in etc. If the ECTS Credits are awarded teaching hours per week and the cor	TEACHING HOURS PER WEEK		ECTS CREDITS			
			4		6.0	
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Background					
PREREQUISITES	None					
TEACHING & EXAMINATION LANGUAGE:	Greek					
COURSE OFFERED TO ERASMUS STUDENTS:	NO					
COURSE URL:	https://eclass.emt.duth.gr/co	urses/PHYSICS16	58/			

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The course covers the following general topics:

Functions

Limits

Derivatives - Applications of derivatives

Some derivatives - applications

Integrals

Integration techniques

Multiple integrals (simple reference)

Sequences - Series

Taylor–Maclaurin series

and general applications of these to physics problems, in order for the student to build the required mathematical background for the next semesters of studies.

1

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Decision making

Autonomous work

Promoting free, creative and inductive reasoning

3. COURSE CONTENT

Functions

Limits

Derivatives - Applications of derivatives

Some derivatives - applications

Integrals

Integration techniques

Multiple integrals (simple reference)

Sequences – Series

TEACHING METHOD

Taylor-Maclaurin series

4. LEARNING & TEACHING METHODS - EVALUATION

Face to face, Distance learning, etc.					
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Use of ICT in Teaching Use of ICT in Communication with students				
TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis, Tytoring, Internation	Activity Workload/semester				

Face to face

TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise,	Activity	Workload/semester
Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive	Lectures	52
learning, Study visits, Study / creation, project, creation,	Writing project	30
The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards	Bibliographic research & analysis	70
	Tutoring	26
complies to EC13 standards	Total	178

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others

Please indicate all relevant information about the course assessment and how students are informed

Student evaluation languages

Greel

Method (Formative or Concluding)

Formative

Student evaluation methods

Written Exam with Problem Solving Written Assignment

60 40

5. Suggested Bibliography

THOMAS ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, [George B. Thomas], Jr., Joel Hass, Christopher Heil, Maurice D. Weir Απειροστικός και Διανυσματικός Λογισμός, Adams R.A., Essex C.

Ανώτερα Μαθηματικά, 3η Έκδοση, Wrede Robert C., Spiegel Murray R.

Λογισμός συναρτήσεων μιας μεταβλητής με στοιχεία διανυσματικής και γραμμικής άλγεβρας, ΤΕΡΖΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Ανώτερα Μαθηματικά, ΜΩΥΣΙΑΔΗΣ ΧΡΟΝΗΣ

Eudoxus

THOMAS ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, [George B. Thomas], Jr., Joel Hass, Christopher Heil, Maurice D. Weir Απειροστικός και Διανυσματικός Λογισμός, Adams R.A., Essex C.

Ανώτερα Μαθηματικά, 3η Έκδοση, Wrede Robert C., Spiegel Murray R.

Λογισμός συναρτήσεων μιας μεταβλητής με στοιχεία διανυσματικής και γραμμικής άλγεβρας, ΤΕΡΖΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Ανώτερα Μαθηματικά, ΜΩΥΣΙΑΔΗΣ ΧΡΟΝΗΣ