

COURSE OUTLINE

1. GENERAL

SCHOOL					
DEPARTMENT	DEPARTMENT OF PHYSICS				
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equivalent level				
COURSE CODE	SSE709-2023	SEMESTER		7th Semester	
COURSE TITLE	Physics and Technology of Thin Films				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PER WEEK		ECTS CREDITS
		3		6.0	
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Scientific Area				
PREREQUISITES	none				
TEACHING & EXAMINATION LANGUAGE:	Greek				
COURSE OFFERED TO ERASMUS STUDENTS:	YES				
COURSE URL:	https://exams.emt.ihu.gr/modules/auth/courses.php				

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The purpose of the course is to acquaint the students with the Physics and technology of surfaces and especially thin films, providing knowledge about the physical mechanisms and processes that govern surface structures and the mechanisms and processes of composition and microstructural development of thin films. In this context, the methods used for the synthesis and characterization of the films are reviewed, their physical and mechanical properties are studied and applications of thin films in microelectronics, biomedicine, the development of optical devices, etc. are presented.

Upon completion of the course, students should:

- To understand the fundamental mechanisms and processes that govern the formation and microstructural development of thin films.
- Know the advantages and disadvantages of different deposition methods.
- Have knowledge of the capabilities and importance of thin films for a variety of applications.

1

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information, ICT Use

Autonomous work

Working in an interdisciplinary environment

Production of new research ideas

Promoting free, creative and inductive reasoning

3. COURSE CONTENT

TEACHING METHOD

Introduction to Surface Physics and definition of thin films, atomic structure, surface thermodynamics, chemical reactivity, crystal structure, crystalline and amorphous materials, Bravais lattices, crystallographic directions and planes, nanocrystalline, polycrystalline and epitaxial thin films, crystalline film defects and disassembly. Convection and diffusion phenomena and surface diffusion. Mechanical stresses and elastic deformation in thin films. Film formation, nucleation and growth, homoepitaxial and heteroepitaxial growth. Development of thin films by deposition techniques, chemical deposition, physical vapor deposition, sputtering, molecular beam epitaxy, laser deposition. Physical and mechanical stability and properties of films. Methods of characterization of films with electron and X-ray diffraction techniques, microscopy and spectroscopic study of surfaces. Modern applications of thin films in microelectronics, optical devices, biomedical technology, solar panel technology, etc.

Face to face

4. LEARNING & TEACHING METHODS - EVALUATION

Face to face, Distance learning, etc.			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Use of ICT in Teaching Use of ICT in Communication with students		
TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise,	Activity Wo	rkload/semester	
Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive	Lectures	75	
learning, Study visits, Study / creation, project, creation,	Writing project	25	
project. Etc. The supervised and unsupervised workload per activity is	Bibliographic research & analysis	50	
indicated here, so that total workload per semester complies to ECTS standards	Total	150	

2

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others

Please indicate all relevant information about the course assessment and how students are informed

Student evaluation languages

Greek English

Method (Formative or Concluding)

Formative

Student evaluation methods

Written Exam with Problem Solving
Written exam with multiple choice test

70 30

5. Suggested Bibliography

Βιβλίο [94692386]: Διατάξεις Ημιαγωγών, Φυσική και Τεχνολογία, 3η Έκδοση, Sze Simon, Lee Ming-Kwei

Βιβλίο [41956294]: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΤΑΞΕΙΣ ΗΜΙΑΓΩΓΩΝ, Neamen

Βιβλίο [50659222]: Φυσική Ημιαγωγών, Τριμπέρης Γιώργος

Eudoxus

Βιβλίο [94692386]: Διατάξεις Ημιαγωγών, Φυσική και Τεχνολογία, 3η Έκδοση, Sze Simon, Lee Ming-Kwei

Βιβλίο [41956294]: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΤΑΞΕΙΣ ΗΜΙΑΓΩΓΩΝ, Neamen

Βιβλίο [50659222]: Φυσική Ημιαγωγών, Τριμπέρης Γιώργος