

COURSE OUTLINE

1. GENERAL

SCHOOL							
DEPARTMENT	DEPARTMENT OF PHYSICS UNDEGRADUATE STUDY PROGRAM: PHYSICS						
LEVEL OF STUDIES	ISCED level 6 – Bachelor's or equivalent level						
COURSE CODE	CHE713-2023	SEMESTER 7th Semester			h Semester		
COURSE TITLE	Computational Physics and its Applications						
TEACHING ACTIVITIES If the ECTS Credits are distributed in etc. If the ECTS Credits are awarded to teaching hours per week and the cor	TEACHING HOURS PER WEEK		ECTS CREDITS				
			3		6.0		
COURSETYPE Background, General Knowledge, Scientific Area, Skill Development	Scientific Area						
PREREQUISITES	None						
TEACHING & EXAMINATION LANGUAGE:	Greek						
COURSE OFFERED TO ERASMUS STUDENTS:	NO						
COURSE URL:	https://eclass2.emt.duth.gr/courses/PHYS_G106/						

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The course aims to impart to the student the basic knowledge he will need to be able to apply various theories of Physics and applied mathematics (e.g. graphs) through programming and analysis of data he will find/gather/collect from experiments/electronic sources or other ways. The student will be able to work on programming that is required both at a professional level in a variety of jobs (programmer/data analyst/algorithm creator) and at a research level (level of creating original research). This course is necessary for students who intend to work in the field of Computational Physics but also in other fields with intensive use of Computers, Algorithms, Data and Programming.

1

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,

ICT Use, Adaptation to new situations,

Decision making,

Autonomous work,

Teamwork,

Working in an international environment,

Working in an interdisciplinary environment, Production of new

research ideas

Project design and management

Equity and Inclusion

Respect for the natural environment

Sustainability

Demonstration of social, professional and moral responsibility

and sensitivity to gender issues

Critical thinking

Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information, ICT Use

Adaptation to new situations

Decision making

Autonomous work

Teamwork

Working in an interdisciplinary environment

Production of new research ideas

Promoting free, creative and inductive reasoning

3. COURSE CONTENT

TEACHING METHOD

General knowledge of algorithms, their connection to Physics problems, implementation and application to real data Efficiency of algorithms, search algorithms, data classification, etc.

Algorithms for creating graphs, analyzing graph properties, etc.

Study of virus propagation in networks, study of resistance of networks to attacks, analysis of social systems, etc.

Applying models and algorithms to real data with programming and data management.

4. LEARNING & TEACHING METHODS - EVALUATION

Face to face, Distance learning, etc.					
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Use of ICT in Teaching Use of ICT in Communication with students				
TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise,		Activity	Workload/semester		
Bibliographic research& analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive	L	_ectures	39		
learning, Study visits, Study / creation, project, creation, project. Etc.		Bibliographic research & analysis	60		
The supervised and unsupervised workload per activity is	S	Study / creation	80		
indicated here, so that total workload per semester complies to ECTS standards	ī	Гotal	179		

Face to face

STUDENT EVALUATION

Description of the evaluation process

Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others

Please indicate all relevant information about the course assessment and how students are informed

Student evaluation languages

Gree

Method (Formative or Concluding)

Formative

Student evaluation methodsRateWritten Assignment60Essay / Report20Presentation in audience20

5. Suggested Bibliography

ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ, ΑΝΔΡΙΩΤΗΣ Ν. ΑΝΤΩΝΗΣ

Επιστήμη Δεδομένων: Βασικές Αρχές και Εφαρμογές με Python, 2η έκδοση, Grus Joel

Eudoxus

ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ, ΑΝΔΡΙΩΤΗΣ Ν. ΑΝΤΩΝΗΣ

Επιστήμη Δεδομένων: Βασικές Αρχές και Εφαρμογές με Python, 2η έκδοση, Grus Joel